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It is shown that the fixing of the divergence of the potential in non-Abelian theories 
does not fix its gauge. The ambiguity in the definition of the potential leads to the fact 
that, when integrating over the fields in the functional integral, it is apparently enough 
for us to restrict ourselves to the potentials for which the Faddeev-Popov determinants 
are positive. This limitation on the integration range over the potentials cancels the infra- 
red singularity of perturbation theory and results in a linear increase of the charge inter- 
action at large distances. 

1. Introduction 

The quantization problem for non-Abelian gauge theories within the framework 
of perturbation theory was solved by Feynman [l], Dewitt [2] and Faddeev and 
Popov [3]. A subsequent analysis of perturbation theory in such theories (Politzer 
[4], Gross and Wilczek [5], Khriplovich [6]) has shown that they possess a remark- 
able property called asymptotic freedom. This property resides in the fact that 
zero-point field oscillations increase the effective charge not in the high-momentum 
region as in QED [7], but in the low-momentum region, i.e. at large distances 
between the charges. This gave hope that such theories may incorporate the phenom- 
enon of color confinement which is fundamental to present day ideas concerning the 
structure of hadrons. 

Answering the question as to whether color confinement occurs in non-Abelian 
theories proved to be a very difficult problem since the nonAbelian fields possessing 
charges (“color”) strongly interact in the large-wavelength region. 

Strong interaction between vacuum fluctuations in the region of large wavelengths 
means that at these wavelengths a significant role is played by field oscillations with 
large amplitudes, for which the substantially non-linear character of non-Abelian 
theories is decisive. Thus, the problem of color confinement is closely connected with 
that of the quantization of large non-linear oscillations. In this paper we show that in 
the region of large field amplitudes the method of quantization by Faddeev and Popov 

is to be improved. 
As will be demonstrated, it is very likely that this improvement reduces simply 

I 
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to an additional limitation on the integration range in the functional space of non- 

Abelian fields, which consists in integrating only over the fields for which the 
Faddeev-Popov determinant is positive. This additional limitation is not significant 
for high-frequency oscillations, but substantially reduces the effective oscillation 
amplitudes in the low-frequency region. This in turn results in the fact that the 
“effective” charge interaction does not tend to infinity at finite distances as occurs 
in perturbation theory, but goes to infinity at infinitely large distances between 
charges, if at all. 

2. Non-uniqueness of gauge conditions 

The difficulties in the quantization of gauge fields are caused by the fact that 
the gauge field Lagrangian 

F,, = a,4 - b+ + k4~,1 I (2) 
where A,, are antihermitian matrices, Sp A, = 0, being invariant with respect to the 
transformation 

A, = S+A;S + S+a,S , s+ = s-1 7 (3) 

contains non-physical variables which must be eliminated before quantization. A 
conventional method of relativistic invariant quantization [3 ] is as follows. Let us 

consider a functional integral 

in Euclidean space-time and imagine the functional space A, in the form shown in 

Fig. 1 
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fig. 1, where the transverse and longitudinal components of the field A, are plotted 
along the horizontal and vertical axes, respectively. Then for fixed A,, eq. (3) 
defines the line L (as a function of S) on which &is constant. The Faddeev and 
Popov idea is that, instead of integrating over A;, one should integrate over matrices 
S and fields A, which have a certain divergence f= ?),A,. Then W is written in the 
form 

W=je- .@d4xflju _l_ 
A@ ‘1 

Xjd=+6If-S+{a,,A;f [v,(A’)Sa,S+]}S], 

where 

W=jfl-S+Kf-S+@,A;+ [v,(A’)sa,s+])s], 

V, (A') = a, + A; . 

(5) 

(6) 

Since the variation with respect to S of the expression under the sign of the 6 func- 

tion is a,, [v, @I), S+ aSI then 

1 
- = II &A)ll , 
AU’) 

(7) 

where the operator Cl (A) is defined by the equation 

%09 = a% + a, L+Gl s q.lCV,(A>Gl . 03) 

Replacing in (4) the variables 

A; = SAPS+ +SiJ,S+ , (9) 

we obtain 

w=je-Jpd4* S(f- $A,) dA Ilfi(A)l( dS- S+ . (10) 

Since (10) does not depend upon f, we may integrate over f with any weight 

function, exp {( 1/2og*) Sp _f f *d.x} being commonly used for this purpose. In so 
doing, with the integration over S omitted, W is obtained in the form 

x + 2$ Sp jGjrAJ2 d4x Il~@)II dA . (11) 

This conclusion is correct under the essential condition that, given a field A;, one 
can always find a unique field A, with a prescribed divergence f, i.e. there are neither 
situations where curve (3) crosses the line a,,A, = f several times (curve L’) nor where 
it does not cross it at all (curve L”). We do not know any examples of situations of 

the type L”, where one cannot find a field A,, with a certain divergence, which is 
gauge-equivalent to a given field Al. However, a situation of the type where many 
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gauge-equivalent fields A, with a given divergence correspond to a given field Al 
is typical in non-Abelian theories. Indeed, in order for two gauge-equivalent fields 
A ic( and Aa,, with the same divergence to exist, there should be a unitary matrix S 

connecting A Ip and AzM, 

Azr = S+A INS f S+a,S , 

and satisfying the equation 

(12) 

d,S+[V,@d,Sl =O > (13) 

or obtained from it through the substitution of A*,, for Al, and Sf for S. In an 
Abelian theory, where S = e@ is a unit matrix, eq. (13) reduces to the Laplace 
equation 

a*p=o, (14) 

and to eliminate non-uniqueness it is sufficient for us to confine ourselves to the 
fields which vanish at infinity. In a non-Abelian case, the non-linear equation (13) 
cannot have growing solutions and hence even for Al, = 0 it has solutions for S 

leading to a decreasing Azr. In the appendix we consider examples of the solution 

to eq. (13) for A ,,, = 0, from which it will be evident that a set of these solutions, 
i.e. of the transverse potentials equivalent to the vacuum, are in order of magnitude 
similar to a set of solutions to the Laplace equation, which grow at infinity, but 
that all of these, though corresponding to such S that do not tend to unity at 
infinity, result in the potentials A2p decreasing as l/r. 

In the appendix we shall also show that, with values of Al, large enough, (13) 
has solutions for S which tend to unity at r + 00 and result in rapidly decreasing 

Azr. Under these circumstances, to calculate correctly the functional integral in a 
non-Abelian theory, we must either replace eq. (11) by the expression 

d4x IlO(A dA 

iTi@’ (15) 

where N is the number of fields gauge-equivalent to a given field A and having the 
same divergence, or restrict the integration range in the functional space so as to 
have no repetitions. 

An intermediate case, when both things are required, is possible. For instance, 
when integrating only over A, vanishing at infinity faster than l/r, we eliminate 
the fields gauge-equivalent to “small” fields, but for large enough A, the gauge- 
equivalent fields will remain and hence N@) in (15) will be needed. In this case, 
the problem of calculating N(A) reduces to the analysis of solutions of eq. (13) 
tending to unity under r + 00 which depend on the character and the magnitude of 
the field A,,. This problem seems to be almost hopeless, but we shall demonstrate 
below that there exists a possibility of a sufficiently universal solution leading to 
physically interesting results. 
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3. A limitation on the integration range in the functional space 

In order to gain some insight into the nature of non-uniqueness in the func- 
tional space A,, let us see for what fields A, there exist gauge-equivalent fields 
close to the former and having the same divergence, i.e. what are the conditions 
for solving eq. (13) with S close to unity. Substituting into (13) 

S=l+CX, Q+ = -a, (16) 

we get 

Zi(~)a = a, [v,(A), a] = 0 . (17) 

Since t!?(A) is the operator whose determinant enters into the functional integral, 
and eq. (17) is simply an equation for the eigenfunction of this operator with a zero 
eigenvalue, we draw the conclusion that the field A, can only have a close equiv- 
alent field when the Faddeev-Popov determinant for this field turns into zero, or 
(which is the same) if the field is such that the FaddeevPopov ghost has a zero-mass 
bound state. Clearly, if the field A, is sufficiently small in the sense that the product 
of the width of the region where A, differs from zero with its amplitude over the 
same region is small, then there are no bound states in such a field, i.e. the equation 

-6(&J/ = E$ (18) 

is solvable for positive E only. For a sufficiently large magnitude and a particular 
sign of the field there appears a solution with E = 0, which becomes one with a nega- 
tive E as the field increases further. For a particular still greater magnitude of the 
field, the level with a zero E reappears, etc. Thus, one can imagine the fields for 
which eq. (17) is solvable as dividing the functional space into regions over each of 
which eq. (18) has a given number of eigenvalues, i.e. there exist a given number of 
bound states for the Faddeev-Popov ghosts. Fig. 2 shows this division of the field 

space into the regions Co, Cr , . . . . C,, over which the ghosts have 0, 1,2, . . . . n bound 
states, by the lines !?r, Q,, . . . . II, on which the ghosts have zero-mass levels. 

Hence, if we imagine the space of the fields A, in this way, it may be asked 
whether two near equivalent fields that can exist close to the line, say, Q I, are located 
on different sides of this line, i.e. one field within the region Cc, another in C 1, or 
may be arbitrarily situated. We shall demonstrate below that, indeed, if there are only 
two near equivalent fields, they will always lie on different sides of the corresponding 
curve III. Moreover, we shall show that for any field located within the region Cr 
close to the curve a, there is an equivalent field within the region Co close to the 
same curve. 

If we could prove that not only for small neighbourhoods close to the curves !2,, 
but also for any field in the region C, there is an equivalent field in the region C,_r , 
we would prove that instead of integrating over the entire space of the fields A,, it 
would be sufficient for us to confine ourselves to the region Cc, i.e. to integrating 
only with respect to the fields A, which create no bound states for the ghosts (up 



6 KN. Gribov / Quanrization of non-Abelian gauge theories 

Fig. 2 

to the first zero of the Faddeev-kopov determinant). However, even at the level of 
the things we can prove, there is a significant statement that for the functional inte- 
gral, integration can be cut off on the boundary of the region C,, , and if there exist 
fields A, not equivalent to those over the region CO, they are separated by a finite 
region from the boundary Q, and are in no way connected with the region of small 

fields A, lying within C, for which perturbation theory holds. 
We shall assume below (until the contrary is established) that these additions are 

either non-existent or insignificant and that the integral (15) is determined over the 

region Co. Generally speaking, we must retain N(A) in (15) because we have not 
proved that there are no equivalent fields over the region inside CO. We shall return 
to this subject below. 

4. Proof of the field equivalence over the regions Co and C1 close to their boundary 

We shall first of all show that if the field A, is close to II,, then there is always a 
similar field equivalent to the former, i.e. for such a field eq. (13) always has a solu- 
tion with S little different from unity and tending to unity at r + =. The condition 
for S + 1 as r + 00 is required because a solution with S f-, 1 yields equivalent fields 
greatly different from the initial field:As shown in the appendix, these fields are 
located within the region C, . We write the field A,, in the form 

A, = C, + a, , (19) 

where CM lies on Q, , i.e. there exists cp,, decreasing at infinity and satisfying the equa- 
tion 

a,[v,~040i =o, 
and acl is small compared to C,, in the sense defined below. 

cw 
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Substituting the matrix S in the form exp a! into (13) and confining ourselves to 

the terms quadratic in a, we obtain 

a, [V,(A), ol - ; a, [o[Vp, a:]] = 0 . (21) 

The solution to (21) may be sought for in the form 

a=cp,tG, G<<cpe. (22) 

Substituting (19), (22) into (21) and taking into account (20), we get 

&&&I~1 =-a,[a,,cPol+~a,[~,tV,Q,~oll * (23) 

Since the right-hand side of (23) vanishes at infinity, for a vanishing solution it is 
sufficient for the r.h.s. to be orthogonal with respect to cpo, i.e. 

(24) 

This equation defines the normalization of (po, i.e. the difference between S and 

unity. 
Hence, we have found S, and thus may now find the field 4; = C, + al, equiv- 

alent to the field A, = C, t a,, 

al = Q/l + [v,(0cp01 > (25) 

and clear up the question of whether A; and A,, lie on both sides of &?r, i.e. whether 
it is true that there exists a bound ghost state in one of the fields A,, , A; and that 
there is no such state in the other. For this purpose, it is sufficient to calculate the 

shift of the level from zero due to the fields ufi and ah : 

N* = SpJq; d4x . (26) 

Using (24), which defines the normalization cpo, we obtain 

E(II) = -E@‘) ) 

which was to be proved. 

(27) 

Non-strictness of the derivation due to the fact that we ignored the continuous 
character of the spectrum at E > 0 can be easily avoided, and we shah not dwell on 
that. The derivation can just as readily be repeated for the fields close to any !& , 
imposing the orthogonality condition of the eigenfunction (p. on the eigenfunctions 
of other bound states together with eq. (24). 

In essence, one can gain some insight into the cause of the field equivalence over 
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Fig. 3 

the regions Co and Cr when considering the effective Lagrangian in (15), 

J? = - $2 SP F,,F,, - 2$ SP(~,A,)* , (28) 

close to II,. The property of the fields C, lying on the line 12,) is that there exists a 
solution to eq. (20). Consider now the fields of the form 

A,=‘$+ D,(C’)~(P~I~ 

Then the Lagrangian 2, to second-order in (pe , takes the form 

(29) 

&0=&c)- ~SPC[F,,Q,~POI[F,,(C~,\~OI 

+ ~~,,B~~~,~~ol~~,~~oll~ 9 (30) 

i.e.2 h as an extremum along [V,(a, cpo] and does not change upon replacing cpo 
by lpo. From this it follows that the fields Ai = C, -+ [vp(C’j, cpo] are equivalent. 
Clearly E(A~) = -e(Ai). 

Since the direction [v,,(C), cpo] is generally not orthogonal to the curve !Jr , the 
distribution of the equivalent fields can correspond to that shown in fig. 3, where 

the equivalent fields are located on dashed lines in the opposite directions to Izr . If 
structural lines can intersect as shown in fig. 3, this will result in the existence of at 
least pairs of equivalent fields within the region Co. As will be demonstrated in the 
appendix, such intersections actually occur, and in this sense the equivalent fields 
do exist in Co, but in the examples considered, these equivalent fields turn out to 
be mirror-reflected ones that are always equivalent. Hence, the field doubling thus 
obtained is independent of the field magnitude and insignificant in the functional 

integral. 

5. Gauge non-uniqueness and limitation on the integration range over the fields in 
physical space-time 

So far we have discussed the functional integration over non-Abelian fields 
defined in four-dimensional Euclidean space. This somewhat simplifies the mathe- 
matics, but makes it more difficult to understand the physical content of the 
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theory and leaves a feeling of dissatisfaction related to the need for analytical con- 
tinuation of the results. 

Certainly, the general statement that the integration should only be performed 
over non-equivalent fields is independent of the nature of the space, and formula 
(15) holds. The difference is in the real form of eq. (13) defining the number of 
equivalent fields. Now, this equation is a hyperbolic one having non-zero solutions 

even in an Abelian case (S = exp cp; 9 is an arbitrary solution to a wave equation). 
One of the ways for eliminating this non-uniqueness is a change-over to Euclidean 
space. In normal space-time this non-uniqueness does not show itself because, 
according to Feynman, we integrate over fields A, which have only positive fre- 
quencies at c + --oo and negative frequencies at t -+ +=. In this case, if we want to 
have two equivalent A, and Al under the same boundary conditions, then A; - A, 
as t -+ --oo and t= should contain only negative and positive frequencies, respec- 
tively. This indicates that equivalent trajectories will only occur through those solu- 
tions of eq. (13) which have only negative and positive frequencies as t + --oo and 
too, respectively. Clearly, these conditions play the same part as those at infinity in 
the Euclidean case, and the linear equations will have no solution at A, = 0 because 
of frequency conservation. Such solutions will exist for non-linear equations or for 
sufficiently large fields A,. For instance, eq. (18) at e = 0 is one for the ghost wave 
function in the external field A,. If the field A, is situated on the line II,, such an 
equation has a solution under the boundary condition specified above, and defines 
the ghost transition from the state with negative energy to that with positive energy. 
Since the ghosts are quantized in the same way as fermions, the process is apparently 
interpreted as the classic formation of ghost pairs in the external field. In a similar 
manner it can be said that solutions of eq. (13) result in the fields Ah which differ 
from A, in pairs of the gauge quanta produced. 

The restriction of the integration in the functional integral to the region Ce 
implies the restriction to the fields in which no classical ghost formation occurs 
because the formation of ghosts merely redefines the fields A,. 

6. The effect of the field magnitude restriction on the zero-point oscillations and 
interaction in the low-momenta region 

In this section we shall try to analyze how a limitation on the integration range 
over the field in the functional integral affects the physical properties of non- 
Abelian theories. 

We shall proceed from eq. (1.5) for the action, disregarding the possibility for 
the equivalent fields to exist in C, : 

(31) 

where V(O) indicates that the integration is performed only over the region Ce. 
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First of all, let us see whether the restriction ‘V(0) is significant from the standpoint 
of what we know from the perturbation theory analysis. For this purpose, consider 

the Green function of the Faddeev-Popov ghost 

(32) 

It is well known that, if we calculate G(k) in perturbation theory, i.e., perform 
the integration over A in (32), omitting V(O) and expanding over the coupling 

constant, we get 

G(k) = ; 
1 

’ (33) 

where A is the ultraviolet cutoff, Q is the gauge parameter in P. From this it is 

obvious that G(k) becomes large at (Y < 3 and physical k* (in the Euclidean space) 
such that 

1 _ 11g*c* A2 

4&r* 
lnF-g* , 

where (33) still holds. From the standpoint of (32), G(k) can be large only due to 
the integration range for the fields where fi is small, i.e. close to the lines P,. 

It is interesting that transverse fields (low CX) act on the ghosts as attractive fields 
and longitudinal fields as repulsive ones. Since the influence of longitudinal fields 

cancels in the calculations of gauge-invariant quantities, we may say that we study 
the contribution to the functional integral cloze to the curves Q,, when calculating 
G(k) near the “infrared pole”, and hence V (0) is definitely significant at momenta 
below or of the order of the “&flared pole” position, whereas at large k we are 
within Cc (low A), where ‘V(O) is insignificant and perturbation theory works. 

Furthermore,V (6) makes it impossible for a singularity of G(k) to exist at 
finite k2 because, with k2 below the singularity position, G(klwould either reverse 
its sign or become complex. Both things would indicate that Cl has ceased to be a 
positively defined quantity, i.e. we have left the region Co when integrating over A,. 
The only possibility that now remains is that k*G(k) has a singularity at k* = 0. 

Such a possibility would indicate that at k * = 0 we feel the fields on the line Qr . 
Up to now, all attempts at finding the mechanism for removal of the “infrared 

pole” have not been successful. Higher corrections [8=10] and instantons [ 11,121 
only bring it nearer. If no other causes are found,V (0) will be the cause. The fact 
that there are no otherzauses for the interaction cutoff is equivalent to the state- 
ment that without V(U) zero fluctuations of the fields tend to leave the region Co. 
Hence it appears quite natural that the fields closest to the boundary of the region 
Co, i.e. connected _with the singularity of k*G(k) at k* = 0, will correspond to the 
real vacuum if%‘(U) is taken into account. 
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For checking the above by a specific calculation, one must write V(h) in a con- 
structive way, but unfortunately we have not yet succeeded in doing this. All we 
could have done was to write this criterion to second order in perturbation theory 
and then calculate the functional integral taking no account of the interaction 
except for V(6). In this case it turns out that there appears a characteristic scale 
K’ defined by the condition g2 In II~/K~ - 1, so that at k2 >> K* the gluon and 
ghost Green functions remain free. The gluon Green function D(k) has complex 
singularities and is non-singular at k2 + 0. The ghost Green function under k2 + 0 
is G(k) - Cfk4. 

If it were not for the roughness of the calculations and difficulties with complex 
singularities of D(k), this would be the right thing for the colour confinement 
theory. 

Let us show the way this is obtained. We write G,(k, A) = -(k, al l/Elk, a) in 
the form of an expansion in perturbation theory (where a is the isotopic index) 

I I I 
I I 

G&k,&=----f-t- t---e (34) 

The first-order term gives no contribution to the diagonal element. The second- 

order term is 

A:(q) is the Fourier component of the potential A,, V the volume of the system, 
u(k, A) defines positions of the poles G(k, A), if any, to a second Born approxima- 
tion since 

G(k,A)=L 
V 

k2 1 - o(k, A) ’ 

In this case we assume, of course, that k is conserved in a typical field of zero-point 
fluctuations ((kl I/O (k’ )lkfzk is proportional to the volume of the system which is 

replaced by 6(k - k’) after averaging). The no-pole condition at a given k is a(k, A) < 1. 
For simplicity, we choose a transverse gauge (a = 0). On averaging over the gluon 
polarization directions h, we have 

d4q IPh( 
a(k, A) = 4s - 

(N4 (k - q)2 
(I-#$). (37) 

If (A’*‘(q)l* over the main range of integration with respect to q decreases 
monotonically with q2, as will prove to be the case in what follows, then u(k, A) 
decreases as k2 increases and hence as a no-level condition use can be made of 

u(O,A)= 3J$ IA=;y” < 1 . (38) 
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Taking (38) as a condition for V (6), replacing P by L! e in (3 1) and omitting 
11011, instead of (3 1) we obtain a functional integral which is easy to calculate, if 
V( 1 - a@, A)) is written in the form 

V(l - o(O,A))=jg eP(l-O(o~A)) , 

W= js ep jI-IdAav” 

where I/ is the volume of the system. Calculating the integral over A, we get 

‘-j&o ” y cq2 + pg2)yq2)W ’ 

(39) 

(40) 

(41) 

n being the number of isotopic states. The integral over /3 can be obtained by the 
steepest-descent method, with the saddle-point value PO determined by 

3n ga -- c l -1+L=o. 
2 v,q 4 + Pog21V PO 

Setting pog2/V= K~, with V+m we get 

;ng2 s d4q 1 
- ----1 
(27r)4 q4 +K4 

or 

A2 
3~g21n;;?-=l. 

(42) 

(43) 

(44) 

If the saddle-point value Do is known, we can return to the functional integral (40), 
substituting fl= PO in it and omitting the integration over /3, so as to obtain an effec- 
tive functional integral for calculating the correlation functions of the fields A. In 
this case, W is 

W= Jti exp -f kqO (k2 + f) IAA’.“(k)12 . 
r , 

Consequently, the gluon and ghost Green functions are 

(45) 

(46) D$(k) = AC(k) A;(k) = 6=b 
k,k, g2k2 

6,” - k2 

) 
__ 

k4+K4 ’ 

1 = 
I 

-1 

G(k)= k2(1 - u(k)) 



V.N. Gribov / Quantization of non-Abelian gauge theories 

respectively, due to (43). 
Ask* +O 

32~~ * 
G(k) = ___ 

g2nk4 ’ 

13 

(47) 

(48) 

in accordance with the above. The fact that the significant range of integration in 
the functional integral turns out to coincide with the boundary of the region III, is 
evident without calculating G(k) because, when calculating the saddle-point value 
/3e, the last term in (42) has no effect at V+ 00 and hence V( 1 - o) is equivalent 
to 6(1 - u). We would obtain the same result when calculating with the function 
(1 - o)cLI(l - o), which is equivalent to an attempt at taking into account the 
effect of the determinant in (31). 

7. Coulomb gauge 

In sect. 6 we discussed the effect of limiting the integration over the fields on 
the properties of vacuum fluctuations in the invariant Euclidean formulation of the 
theory. In so doing, we adduced arguments for singularity of the ghost Green func- 

tion as k2 +- 0 (for example, l/k4). This certainly is an indication of a substantial 
long-range effect in the theory that may result in colour confinement, but the ghost 
Green function in an arbitrary gauge is not connected directly with the Coulomb 
interaction at large distances. Hence, in this section we shall rewrite the foregoing 
analysis for the Coulomb gauge [13] where the Green function of the ghost deter- 
mines directly the Coulomb interaction. We shall show that the situation which 
involves a restriction on the integration range over fields and a cutoff of the infrared 
singularity found in perturbation theory is exactly the same as in invariant gauges. 
The arguments for singularity of the ghost Green function hold here as well. In this 
case, however, a singularity of the ghost Green function as k2 -+ 0 of the type l/k4 
is indicative of a linear increase in the Coulomb interaction with distance. 

The most natural way of formulating the Coulomb gauge is the Hamiltonian 
form which shows up vividly the unitarity of the theory because of the lack of 
ghosts. To this end, the functional integral W incorporates the fields which satisfy 
the three-dimensional transversality condition 

and momenta rri which are canonically conjugated with them and stand for the 
transverse part of the electric field 

7Ti=E,I= $-[oiAo] ( ) 
1 

. (50) 
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The integral over Ae is calculated for fixed Ai and cancels the Faddeev-Popov 
determinant. 

As a result, the functional integral takes the form 

91(7Ti, Aj) = -1 {nf + P(Ai) + aj\oaiCp} , 

(52) 

Z(A)q = -p, 34)q E [Vi(A), ai+ P = [Ai, ril . (53) 

In this case, the integration should be performed over gauge-inequivalent transverse 
fields, as for invariant gauges in (51). 

The number of fields equivalent to a given field Ai is determined by the number 

of solutions of the equation similar to eq. (13) 

[Vi(A), SaiS’] =O . (54) 

The condition for the existence of two equivalent fields is the existence of a solu- 

tion of the equation 

[Vi@), ai = 0 , (55) 

a zero eigenvalue of the operator $4) defining the Coulomb potential according to 
eq. (53). Repeating the arguments given above for the four-dimensional case (see 
also the appendix), we draw a conclusion that t_he integration range in (5 1) should be 
restricted to the region Co where the operator A(A) has no eigenvalues. 

This region coincides with the one where the Coulomb energy density 

does not go to infinity anywhere except for its boundary. In the Coulomb gauge, 
instead of the functional integral we can use the Schrodinger equation 

(57) 

bearing in mind that gC is determined only for the region Ce. 
Let us discuss now how a limitation by the fields within Ce affects the spectrum 

and zero oscillations defined by eq. (57). As before, for the no-level condition in 
the field A i we set 

(58) 
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obtained in a similar manner from the Green function. Omitting in BC(n, A) all terms 

except for 81, = -;(I$ - Aia2Ai), we obtain, instead of (.57), an equation for an 

oscillator system 

c b$q(N +k*Qz,q(k)j @a= W(a) 3 

k,hq 

provided that 

Taking no account of (60), for free oscillations lah,p(k)12 - I/k and hence the left- 
hand side of (60) is infinite. This means that free oscillations correspond to the 
fields far outside the region Co. Eqs. (59), (60) can be solved approximately by the 

variational method assuming that 

ti = kvq f&Lq WI . (61) 
, , 

Calculating the energy minimum for the system with the fixed value of the left- 
hand side in (60), we get an oscillator equation for fwith k* + K4/k2 instead of k*, 
where ~~ is the variational parameter. In this case, the ground-state energy and 
average squares of oscillation amplitudes will be 

E=+ c 
kh,q r- 

k*+$, 

h,,(k>l* = $5 (62) 

The energy is at a minimum with K = 0, but as this takes place, the left-hand side 
in (60) equals infinity. Therefore, K is determined from the condition 

f&T2 s d3k_- 1 

(2T)3 kJ= 

The ghost Green function is 

G(k)= (k+k) 

=- 
d3k’ (k* - 2kk’)(l - (kk’)*/k*k’*) 

k’(k’ - k)“@%? 

(63) 

(64) 

ask*+0 

G(k) = 
6 

5g2nk4 ln(K*/k*) ’ 
(65) 
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Thus, this crude calculation shows that again there is a characteristic scale beyond 
which zero-point oscillations become small and the Coulomb potential increases 

linearly with distance. 
In conclusion, it should be noted that since zero-point oscillations of the fields 

in vacuum turn out to be on the boundary of the region Co, we have no right to 
ignore the Coulomb energy which may go to infinity on this boundary. However, 
considering that the number of zero oscillation modes pushing the system outside 
the region Co is infinitely large and that the boundary equation comprises one con- 
dition (60) we have good cause to think that the system will remain close to the 
boundary despite the Coulomb interaction. In this case, the condition (60) will be 
satisfied all the same, which is indicative of a decrease in the zero oscillation ampli- 

tudes for momenta below a particular value and of a linear increase in the Coulomb 
potential with distance. 

Finally, I wish to express my sincere gratitude to A.A. Belavin, A.M. Polyakov, 
L.N. Lipatov and Yu.L. Dokshitser for numerous most helpful discussions. 

Appendix 

In this appendix we consider the properties of gaugeequivalent fields with equal 
divergence, giving the simplest examples. Let us begin with the case of the three- 
dimensional space (Coulomb gauge) and the group SU(2). We consider “spherically 
symmetric” fields Ai, i.e., the fields dependent on one unit vector nj = Xi/r (r= dxf). 

The general expression for such a field has the form 

fi = inaua, ua, are Pauli matrices, fi2 = -1. Under the spherically symmetric gauge 

transformation of the form 

S= exp{fo(r)fi} = cos(+) + A sin(icu) 

Ai goes into Xi(x)= S+AiS + S+a,S SO that 

ft=f, cosot(f2t~)sina, 

(A.2) 

j72++=--fisincu+(f2+~)cosoc, 

&=f;t;a’, 

aAi/axi = ii[f; + (2/r)fJ - 2fi/r*] . 

The condition 

(A.3) 

(A.4) 

aAhi/aXr = 3Ai /aXi (A.5) 
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t 24, 

Fig. 4 

is equivalent to the equation 

a” f (2/r) c~’ - (4/r2) {(f2 + 4) sin cr + fr (cos cr - 1)) = 0 . (A.6) 

If we introduce the variable r = In I, eq. (A.6) reduces to the equation for a pen- 
dulum with damping in the field of the vertical force 4f+ 2, horizontal force 4fr, 
and the force perpendicular to the pendulum, -4fi 

(Y+&-(2t4f2)sina!+4fr(l -cosol)=O. (A.7) 

From this analogy the general properties of solutions to the equations of the equiv- 
alence conditions (AS), (A.6) are readily seen. 

If the forces fi and f2 are equal to zero as r + 0 (7 -+ -; otherwise the field A r 
is singular as r + 0) and tend to zero as r + 00 (7 -+ +=), then for a solution to exist 
at finite 7, as r + -00, the pendulum should be in the position of unstable equili- 
brium, (Y = 0. In such an event, if its initial velocity as Q- + - is not specifically 
selected, upon executing a number of oscillations in the field, the pendulum starts 
damping and once only the vertical force remains, it comes to stable equilibrium. 
Such a solution corresponds to S + ri, as r + 00, and the equivalent field 

Ai = -fiafi/aXi - l/r . 

decreases slowly at infinity. 

(A.@ 

However, exceptional cases are possible. If sufficiently large, these forces can 
under specifically selected initial conditions restore the pendulum to its unstable 
equilibrium position. In this case, we obtain the equivalent field _& which decreases 
fairly rapidly at infinity. We consider several versions of such a possibility. Let the 
forces and initial conditions be such that throughout the whole “time” -00 < r < 
+oo, lo(r)1 << 1. Then, to a zero approximation the equation 

&td:-2a(l+2fz)=O (A.9) 

should be satisfied. This equation is simply eq. (20) for the three-dimensional case. 
In order for eq. (A.9) to hold, -Jf2 dr should have a particular and sufficiently 
large value. The field with a correspondingf2 lies on the curve Qr independently of 
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the values for fr and fs. Taking into account the quadratic term in (A.7) enables US 

to get a solution with a somewhat larger or smaller f2 (within or outside the region 
C,) and to determine the amplitude of (Y as demonstrated in the text. 

Iffr = 0, there are no second-order terms and a solution exists only forf2 larger 
than the value required for a zero energy level. The amplitude of (Y is determined by 
taking into account third-order terms. It is obvious that in this case there are two 
solutions that differ from one another by the sign of (Y. It can easily be shown that 
they are in the region C,,. This situation corresponds to the phenomenon of inter- 
section of the equivalent field lines discussed in the text and illustrated in fig. 3. 

The field for which fi = 0 lies on the intersection of such lines. The occurrence of 
two equivalent fields in Co in this example does not point to the necessity of intro- 
ducing N(A) in the region Co because it shows the symmetry of the problem with 
respect to reflection. It is easily shown that the fields fi, f3, fi and -fi, -f3, -fi 
are gaugeequivalent and have equal divergence. Hence the functional integral should 
be divided by two, independently of the magnitudes of the fields fi, f3, fi, which 
do not matter. Accordingly, eq. (A.6) always has two solutions o1 = a(fi, fi) and 
(~2 = -a(-fi, f2). The second solution in the field -fr, -fs, f2, a2 (-fi, f2), leads 
to an equivalent, reflected field obtained from fi, f2, f3 using the solution 01~ (fr, f2). 
With fi = 0, both reflected fields are obtained from one initial field. Two other solu- 
tions o1 (-fi, f2) and a2 cfr, f3) are outside Ce anyway, for small fi and f2 close to 

91. 
Another possibility for the pendulum to regain its unstable equilibrium position 

is to execute one complete revolution (or more). This possibility may exist even 
with f2 = 0, i.e., deep inside the region Co. Such solutions exist at large enough fi , 

but the equivalent fields corresponding to them differ greatly from the initial field 
and are likely to lie outside Co. For example, with f2 = O,Ta is of the order of unity 

according to (A.3) because (Y in a complete revolution changes from 0 to 2n. 
Hence, the fields inside Co have their equivalents of two types, i.e. the fields 

which possess asymptotics at = of the type (A.8) ( a! + n) and lying within the region 
C, (it is easy to see that with f2 = 1 as r + 00, (A.9) has an infinite number of solu- 
tions) and the fields situated in C, with a finite n. 

Finally, let us discuss the question as to whether for a particular field Ai an 
equivalent field Ai with a specified difference liAf in their divergence can always be 
found. The equation for a corresponding a(r) will differ from (A.7) in the external 
force 2Af e2’ on the right-hand side,perpendicular to the pendulum. In this case, it 
is likely that there exists, “almost” without exception, a solution with (Y tending to 
2n1r asr+w because, as we have seen, if fi and f2 are large, the solution comes into 
play through choosing the initial conditions; should fi, f2 and Af be small, we have 
an inhomogeneous linear equation for which the choice is made in a trivial way. 

We now turn to the four-dimensional space. In this case, it is convenient to deal 
with the group O(4) from which SU(2) is trivially separated. 

Instead of iTt as antihermitian matrices for infinitesimal transformations in the 
group O(4), one may choose uPV = 4 (yPyV - y,,y,,). For constructing a scalar, we 
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need an antisymmetric tensor, i.e. at least two vectors are required. This indicates 
that the field cannot be spherically symmetric. It can be axially symmetric if we 
choose as antisymmetric tensor 

F,.w = 
nplv - n”1j.t 

Jl - (r&J,)* ’ 
(A.10) 

where n,, =x,/p and I,, is a constant unit vector. The gauge transformation 
matrix between such axially symmetric fields can be written as 

S= exp {l/3(!, nl)_$} = cos JJ3 + rj sin $ , 

4 = f ~,d,.w 3 nl= lpncc, r=@. (A.1 1) 

The field A, which preserves its shape under this transformation has the form 

A, =fd,ti +f2wd+ w,f3. (A.12) 

The transformation formulae between E and fi coincide with (A.3), if Q is replaced 

by P. 
The equivalence condition is 

a*fl- 4 
r*(l -q)* 

[(f2+!j)sinp-fr(l -cos/3)]=0. (A.13) 

With fi = f2 = 0, there is a solution similar to (A.6) which is dependent on one 
variable p* = r*(l - nf) and has the same asymptotics. Despite two variables, which 

make this equation more cumbersome, its structure is much the same as that of 
(A.6), and we do not see any reasons why the structure of its solutions should differ 
markedly from (A.6). 
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